JOM 23874

Rhenium complexes from alkynes. X-Ray crystal structures of Re₂(μ -2 η^1 , η^4 -C₄Ph₄)(CO)₇ and Re{C,O-CH=C[Re(CO)₄(NMe₃)]C(OMe)O}(CO)₄

Michael I. Bruce and Paul J. Low

Jordan Laboratories, Department of Chemistry, University of Adelaide, Adelaide, S.A. 5005 (Australia)

Brian W. Skelton and Allan H. White

Department of Chemistry, University of Western Australia, Nedlands, W.A. 6009 (Australia) (Received May 12, 1993)

Abstract

The molecular structure of $\text{Re}_2(\mu-2\eta^1,\eta^4-C_4\text{Ph}_4)(\text{CO})_7$ obtained from $\text{Re}_2(\text{CO})_8(\text{NCMe})_2$ and C_2Ph_2 , consists of an $\text{Re}_2(\text{CO})_7$ unit [Re-Re 2.874(1) Å] bridged by a $2\eta^1,\eta^4-C_4\text{Ph}_4$ ligand, as proposed by earlier workers. Methyl propiolate is inserted into the Re-Re bond of $\text{Re}_2(\text{CO})_9(\text{NCMe})$, as shown by the molecular structure of the NMe₃ derivative of the product; the NMe₃ ligand is attached to the non-chelated Re atom [Re-N 2.31(1) Å].

Key words: Rhenium; Alkyne; Crystal structure; Amine; Carbonyl; Vinyl

1. Introduction

Although the reactions between metal carbonyls and alkynes have been the source of many interesting and novel complexes, these have been relatively little studied in the case of rhenium. Early reports of the reaction between $\text{Re}_2(\text{CO})_{10}$ and diphenylethyne [1,2] describe the formation of three complexes, two of which were identified with the aid of X-ray structure determinations [1,2]. Adams [3] has described some chemistry of rhenium carbonyls with aminoethynes and more recently, has reported an unusual insertion of HC₂CO₂Me into the Re-Re bond of the binuclear carbonyl [4]. In connection with other work to be reported elsewhere, we have had occasion to repeat these reactions, obtaining two related complexes, the molecular structures of which form the subject of this paper.

2. Results and discussion

We carried out a reaction between the "activated" rhenium carbonyl, $\text{Re}_2(\text{CO})_8(\text{NCMe}_2)$, and C_2Ph_2 in refluxing dichloromethane for 24 h. From the reaction mixture we were able to isolate the three complexes $\text{Re}_2(\mu\text{-C}_4\text{Ph}_4)(\text{CO})_7$ (1) (8%), $\text{Re}_2(\text{CO})_5(\text{C}_4\text{Ph}_4)(\text{C}_2\text{-Ph}_2)$ (2) (7%) and $\text{Re}_2(\text{CO})_4(\text{C}_6\text{Ph}_6)(\text{C}_2\text{Ph}_2)$ (3) (18%). While the latter two have been structurally characterized, we took the advantage of having a crystalline sample of 1 to determine its molecular structure, thereby confirming the suggestions made earlier [1] concerning the nature of this complex.

2.1. Molecular structure of $\operatorname{Re}_2(\mu - C_4 \operatorname{Ph}_4)(CO)_7(1)$

A molecule of 1 is depicted in Fig. 1 and selected bond parameters are collected in Table 1, together with corresponding data for 2. It can be seen that two C_2Ph_2 molecules have joined with one Re to form a rhenacyclopentadiene [Re(2)-C(1,4) 2.207(7), 2.203(8) Å] which is attached to the second Re atom in the η^4 mode [Re(1)-C(1-4) 2.25(1)-2.342(7) Å]. An Re-Re

Correspondence to: Professor M.I. Bruce.

bond [2.874(1) Å] joins the two atoms. Three CO groups are attached to Re(1), four to Re(2); CO(13) is somewhat closer to its Re atom [1.888(9) Å] than the

Fig. 1. Plot of a molecule of $\text{Re}_2(\mu-2\pi^1,\pi^4-C_4\text{Ph}_4)(\text{CO})_7$ (1) (a) down and (b) normal to the Re-Re bond; 20% thermal ellipsoids are shown for the non-hydrogen atoms, hydrogen atoms having arbitrary radii of 0.1 Å.

TABLE 1. Some bond parameters for complexes 1 and 2 [2]

	1	2
Bond lengths (Å)		
Re(1)-Re(2)	2.874(1)	2.878(1)
Re(1) – C (1)	2.25(1)	2.255(5)
Re(1)-C(2)	2.322(8)	2.307(5)
Re(1)-C(3)	2.342(7)	2.351(5)
Re(1)-C(4)	2.320(7)	2.359(5)
Re(1)-C(24)	2.85(1)	
Re(2)C(1)	2.207(7)	2.099(5)
Re(2)-C(4)	2.203(8)	2.170(5)
C(1)-C(2)	1.40(1)	1.407(7)
C(2)-C(3)	1.48(1)	1.446(7)
C(3)-C(4)	1.38(1)	1.388(7)
Bond angles (°)		
Re(2)-Re(1)-C(13)	163.4(3)	163.6(2)
C(21) - Re(2) - C(1)	167.5(3)	124.0(3)
C(22) - Re(2) - C(4)	167.6(3)	146.7(3)
C(1)-Re(2)-C(4)	75.0(3)	75.4(2)
C(23) - Re(2) - C(24)	173.3(4)	
C(21)-Re(2)-C(22)	94.3(3)	84.8(3)
C(11)-Re(1)-C(12)	87.3(4)	88.4(3)
C(11) - Re(1) - C(13)	89.5(4)	88.8(3)
C(12)-Re(1)-C(13)	85.5(4)	86.9(4)
Re(2)-C(24)-O(24)	170(1)	

other five [average Re-C 1.95_3 Å], probably because of the competing electronic requirements of the Re-Re bond, to which it is *trans*. The geometry about each Re atom is approximately octahedral if the Re-Re bond occupies a coordination site on Re(1) but not on Re(2). Around Re(2), the angle subtended by by C(1, 4) is 75.0(3)° and by CO(21, 22) and CO(23, 24) are 94.3(4) and 173.3(4)°, respectively. The latter appear to be pushed away from the ReC₄ ring by the bulky Ph groups. The angles at Re(1) subtended by the CO groups range between 85.5 and 89.5(4)°, and from CO(11, 12) to the midpoints of the C(3, 4) and C(1, 2), bonds are 103.7(3) and 108.6(4)°, respectively. The Re(2)-Re(1)-CO(13) angle is 163.4(3)°.

The five-membered ReC_4 ring does not exhibit any unusual features. As found for 2, there is an alternation in C-C distances [C(1)-C(2) 1.40(1), C(2)-C(3) 1.48(1), C(3)-C(4) 1.38(1) Å]. In 1, two CO groups occupy the coordination position occupied by the C_2Ph_2 molecule in 2. Atoms C(21, 22) are respectively *trans* to C(1, 4), with angles at Re(2) being 167.5(3) and 167.6(3)°. Each metal atom has an 18-electron configuration.

In summary, this structure determination has confirmed the previously suggested structure for 1: there are few changes resulting from the replacement of two CO groups in 1 by the C_2Ph_2 ligand found in 2.

The reaction between $Re_2(CO)_9(NCMe)$ and HC_2CO_2Me , also carried out in refluxing dichloro-

Fig. 2. Plot of a molecule of $Re\{C,O-CH=C[Re(CO)_4(NMe_3)]-C(OMe)O\}(CO)_4$ (5). Selected bond distances: Re(1)-C(2) 2.218(9), Re(1)-N(14) 2.31(1), Re(2)-C(1) 2.179(9), Re(2)-O(1) 2.178(6), C(1)-C(2) 1.37(1), C(2)-C(3) 1.44(1), C(3)-O(1) 1.27(1), C(3)-O(2) 1.30(1) Å.

methane, afforded the binuclear complex Re{C,O-CH=C[Re(CO)₅]C(OMe)O}(CO)₄ (4), described independently during the course of our work by Adams [4]. Our original supposition that this compound was an η^2 -alkyne complex led us to treat it with Me₃NO in an attempt to induce either addition of the C-H bond across the Re-Re bond (as occurs with HC₂Ph [5]) or coordination of the ester carbonyl group. In the event, loss of CO (as CO₂) and coordination of NMe₃ occurred to give Re{C,O-CH=C[Re(CO)₄(NMe₃)]-C(OMe)O}(CO)₄ (5), as shown by a crystal structure determination.

2.2. Molecular structure of $Re\{C, O-CH=C[Re(CO)_{4}, (NMe_{3})]C(OMe)O\}(CO)_{4}$ (5)

The molecular structure of 5 is shown in Fig. 2; important bond parameters are given in the caption. There are few significant differences between the structures of 4 and 5, with the exception of the replacement of CO(14) by NMe₃ [Re(1)-N 2.31(1) Å]. The CO displaced is that *cis* to the C(2)-Re(1) bond. Adams *et al.* [4] have already discussed the possible mechanism of formation of their complex; in our case, further treatment with Me₃NO results in loss of a CO ligand (as CO₂) and coordination of NMe₃ to the non-chelated Re(1) atom.

3. Experimental details

3.1. General conditions

All reactions were carried out under dry, high purity nitrogen by use of standard Schlenk techniques. Solvents were dried and distilled before use. Elemental analyses were performed by the Canadian Microanalytical Service, Delta, B.C., Canada V4G 1G7. TLC was carried out on glass plates $(20 \times 20 \text{ cm}^2)$ coated with silica gel (Merck 60 GF₂₅₄ 0.5 mm thick).

Instrumentation: IR: Perkin-Elmer 1700X FT IR; 683 double beam, NaCl optics. NMR: Bruker ACP300 (¹H NMR at 300.13 MHz, ¹³C NMR at 75.47 MHz); Bruker CXP300 (³¹P NMR at 121.49 MHz). FAB MS: VG ZAB 2HF (FAB MS, using 3-nitrobenzyl alcohol as matrix, exciting gas Ar, FAB gun voltage 7.5 kV, current 1 mA, accelerating potential 7kV).

Starting materials: $\text{Re}_2(\text{CO})_{10}$ (Strem) was used as received. Chemical reagents were laboratory grade and used as received. $\text{Re}_2(\text{CO})_9(\text{NCMe})$ [6], $\text{Re}_2(\text{CO})_8$ -(NCMe)₂ [6] and HC₂CO₂Me [7] were prepared according to the literature procedures.

3.2. Reaction between $Re_2(CO)_8(NCMe)_2$ and C_2Ph_2

A solution of $\text{Re}_2(\text{CO})_8(\text{NCMe})_2$ (100 mg, 0.15 mmol) and C_2Ph_2 (67 mg, 0.38 mmol) in CH_2Cl_2 (10 ml) was refluxed for 24 h to give an orange solution. The solvent was removed and the residue purified by preparative TLC to give three major bands. The first band (R_f 0.6) was recrystallized from CH_2Cl_2 /hexane to give pure $\text{Re}_2(\text{CO})_7(\text{C}_4\text{Ph}_4)$ (2) (11 mg, 8%). Anal. Found: C, 45.76; H, 2.52. $\text{C}_{35}\text{H}_{20}\text{O}_7\text{Re}_2$ calcd.: C, 45.45; H, 2.16%. IR (hexane): $\nu(\text{CO})$ 2087m, 2035vs, 2017s, 1979vs, 1968s, 1938m cm⁻¹ (lit.[2]: 2085w, 2035s, 2015m, 1992m, 1979s, 1958w, 1948w cm⁻¹). FAB MS: m/z 924, M⁺; 896–728, [M – nCO]⁺ (n = 1–7). The second band (R_f 0.4) (11 mg, 7%) contained $\text{Re}_2(\text{CO})_5(\text{C}_4\text{Ph}_4)(\text{PhC}_2\text{Ph})$ [IR (hexane): $\nu(\text{CO})$

TABLE 2. Crystal data and refinement details for complexes 1 and 5

Compound	1	5
Formula	C ₃₅ H ₂₀ Re ₂ O ₇	C ₁₅ H ₁₃ NO ₁₀ Re ₂
MW	925.0	739.7
Crystal system	Monoclinic	Monoclinic
Space group	$P2_1/c$	P2 ₁ /c
a (Å)	10.597(2)	7.670(3)
b (Å)	19.80(2)	18.448(3)
c (Å)	16.141(3)	15.200(7)
β(°)	114.34(2)	108.72(4)
U (Å ³)	3085	2037
Ζ	4	4
$D_{c} (g \text{ cm}^{-3})$	1.99	2.41
F(000)	1744	1360
Crystal size (mm)	0.49×0.90×0.64	$0.51 \times 0.21 \times 0.17$
A* (min, max)	10.8, 26.9	5.1, 10.5
μ (cm ⁻¹)	78.9	119
2θ _{max} (°)	55	50
N	6601	3579
No	5422	3059
R	0.039	0.035
R _w	0.045	0.045

2046s, 2018s, 1963(br), 1945(br), 1929(br) cm⁻¹ (lit.[2]: 2046s, 2019s, 1967m(br), 1947w(br), 1928m(br) cm⁻¹)] and the third band (R_f 0.3) contained Re₂(CO)₄(C₆Ph₆)(PhC₂Ph) (33 mg, 18%) [IR (hexane): ν (CO) 2032s, 1997m, 1962s, 1942w cm⁻¹ (lit.[2]: 2035s, 1997m, 1962m, 1942w(br) cm⁻¹].

3.3. Preparation of $Re\{C, O-CH=C[Re(CO)_5]C-(OMe)O\}(CO)_4$ (4)

A solution of $\text{Re}_2(\text{CO})_9(\text{NCMe})$ (500 mg, 0.75 mmol) was dissolved in CH_2Cl_2 (20 ml) containing methyl

TABLE 3. Non-hydrogen positional and isotropic displacement parameters, $\boldsymbol{1}$

Atom	x	у	z	U _{eq} (Å ²)
Re(1)	0.90588(3)	0.39160(2)	0.65058(2)	0.0350(1)
Rc(2)	0.83849(3)	0.29753(2)	0.76183(2)	0.0394(1)
C(11)	1.0276(8)	0.3410(4)	0.6107(6)	0.045(3)
O(11)	1.0948(7)	0.3102(3)	0.5861(5)	0.076(4)
C(12)	0.762(1)	0.3787(5)	0.5299(6)	0.059(4)
O(12)	0.6778(8)	0.3710(5)	0.4588(5)	0.099(4)
C(13)	0.9487(8)	0.4711(4)	0.6030(5)	0.045(3)
O(13)	0.9674(7)	0.5212(3)	0.5735(4)	0.065(3)
C(21)	0.931(1)	0.2147(4)	0.8223(7)	0.065(5)
O(21)	0.9846(9)	0.1659(4)	0.8586(6)	0.108(5)
C(22)	0.6528(9)	0.2617(5)	0.7277(6)	0.057(4)
O(22)	0.5437(7)	0.2416(4)	0.7086(6)	0.096(4)
C(23)	0.843(1)	0.3312(5)	0.8790(6)	0.064(4)
O(23)	0.843(1)	0.3538(4)	0.9439(5)	0.107(5)
C(24)	0.830(1)	0.2537(5)	0.6506(6)	0.064(4)
O(24)	0.821(1)	0.2196(4)	0.5906(6)	0.098(5)
C(1)	0.7639(8)	0.4017(4)	0.7218(5)	0.037(3)
C(101)	0.6128(8)	0.4176(4)	0.6884(5)	0.041(3)
C(102)	0.5141(9)	0.3962(5)	0.6070(6)	0.057(4)
C(103)	0.3773(9)	0.4123(6)	0.5793(7)	0.067(4)
C(104)	0.3348(9)	0.4483(6)	0.6323(8)	0.073(5)
C(105)	0.428(1)	0.4692(6)	0.7161(8)	0.078(6)
C(106)	0.5677(9)	0.4537(5)	0.7443(6)	0.058(4)
C(2)	0.8634(7)	0.4524(4)	0.7594(5)	0.035(3)
C(201)	0.8301(7)	0.5254(4)	0.7602(5)	0.039(3)
C(202)	0.8744(8)	0.5600(4)	0.8413(6)	0.048(3)
C(203)	0.836(1)	0.6264(5)	0.8424(7)	0.068(5)
C(204)	0.753(1)	0.6594(5)	0.7645(8)	0.072(5)
C(205)	0.707(1)	0.6250(5)	0.6834(7)	0.068(5)
C(206)	0.7458(9)	0.5591(4)	0.6795(6)	0.050(4)
C(3)	1.0083(7)	0.4281(4)	0.8020(5)	0.034(3)
C(301)	1.1262(7)	0.476294)	0.8484(5)	0.036(3)
C(302)	1.2042(9)	0.4675(5)	0.9411(6)	0.057(4)
C(303)	1.314(1)	0.5101(5)	0.9876(7)	0.070(4)
C(304)	1.348(1)	0.5615(5)	0.9442(9)	0.087(6)
C(305)	1.271(1)	0.5710(5)	0.8536(8)	0.071(5)
C(306)	1.1583(9)	0.5294(4)	0.8059(6)	0.052(4)
C(4)	1.0275(7)	0.3591(4)	0.8008(5)	0.038(3)
C(401)	1.1702(8)	0.3316(4)	0.8453(5)	0.040(3)
C(402)	1.2083(9)	0.2942(4)	0.9231(6)	0.059(4)
C(403)	1.342(1)	0.2721(5)	0.9713(7)	0.078(5)
C(404)	1.440(1)	0.2857(5)	0.9388(9)	0.090(5)
C(405)	1.4052(9)	0.3235(5)	0.8612(8)	0.073(5)
C(406)	1.2719(9)	0.3447(4)	0.8144(6)	0.056(4)

TABLE 4. Non-hydrogen positional and isotropic displacement parameters, 5

Atom	x	у	z	$U_{\rm eq}({\rm \AA}^2)$
Re(1)	0.29071(5)	0.31553(2)	0.50144(3)	0.0350(2)
C(11)	0.076(2)	0.2956(5)	0.3897(7)	0.047(4)
O(11)	-0.040(1)	0.2891(4)	0.3208(6)	0.072(4)
C(12)	0.503(2)	0.3440(6)	0.6101(8)	0.049(4)
O(12)	0.625(1)	0.3646(5)	0.6703(6)	0.078(4)
C(13)	0.451(2)	0.3034(6)	0.4268(9)	0.059(5)
O(13)	0.545(1)	0.2956(6)	0.3837(7)	0.088(5)
N(14)	0.094(1)	0.3186(4)	0.5892(6)	0.041(3)
C(141)	-0.013(2)	0.3859(6)	0.570(1)	0.078(7)
C(142)	- 0.036(2)	0.2562(7)	0.569(1)	0.076(6)
C(143)	0.198(2)	0.3149(8)	0.6900(8)	0.079(6)
C(15)	0.262(2)	0.4171(6)	0.4693(8)	0.054(5)
O(15)	0.260(1)	0.4786(4)	0.4521(7)	0.084(5)
Re(2)	0.50020(6)	0.06043(2)	0.64787(3)	0.0409(2)
C(21)	0.705(2)	0.0730(5)	0.5934(8)	0.049(4)
O(21)	0.826(1)	0.0848(5)	0.5692(7)	0.074(4)
C(22)	0.308(2)	0.0644(6)	0.7082(8)	0.058(5)
O(22)	0.201(2)	0.0716(6)	0.7440(7)	0.094(5)
C(23)	0.680(2)	0.0583(6)	0.7691(9)	0.061(5)
O(23)	0.788(1)	0.0559(5)	0.8400(6)	0.092(4)
C(24)	0.494(2)	- 0.0462(6)	0.6383(8)	0.056(5)
O(24)	0.490(1)	-0.1074(4)	0.6315(6)	0.074(4)
C(1)	0.467(2)	0.1771(5)	0.6266(7)	0.046(4)
C(2)	0.340(1)	0.2008(5)	0.5459(7)	0.038(3)
C(3)	0.244(1)	0.1401(4)	0.4918(6)	0.031(3)
O(1)	0.2837(9)	0.0745(3)	0.5151(4)	0.042(2)
O(2)	0.1083(9)	0.1515(3)	0.4159(5)	0.045(3)
C(4)	0.005(2)	0.0905(6)	0.3700(8)	0.061(5)

propiolate (315 mg, 3.75 mmol) was refluxed for 24 h, during which it became deep orange. The solvent was removed and the resulting solid recrystallized (CH₂Cl₂/MeOH) to give Re{C,O-CH=C[Re(CO)₅]-C(OMe)O}(CO)₄ (4) as very fine pale yellow needles (315 mg, 60%), m.p. 151–155°C. IR (cyclohexane): ν (CO) 2133w, 2089m, 2022vs, 1990m, 1983s, 1981s, 1935m cm⁻¹ (lit.[4]: 2134w, 2090m, 2024s, 1991(sh), 1986(sh), 1982s, 1937s cm⁻¹). ¹H NMR (CDCl₃): δ 3.90 (3H, s, OCH₃); 10.42 (1 H, s, C₂H). ¹³C NMR (CDCl₃): δ 54.73 (s, OCH₃); 121.05 (s, HC₂CO₂Me); 127.69 (s, HC₂CO₂Me); 182.01 (s); 182.88 (s); 189.36 (s); 193.02 (s); 193.33 (s, CO); 222.46 (s, CO₂). FAB MS: m/z 708, M⁺; 680–484, [M – nCO]⁺ (n = 1–8).

3.4. Reaction between $Re\{C, O-CH=C[Re(CO)_5]-C(OMe)O\}(CO)_4$ (4) and Me_3NO

Me₃NO (10.6 mg, 0.14 mmol) was added in portions to a stirred solution of 4 (100 mg, 0.14 mmol) in CH₂Cl₂ (10 ml). The solvent was removed and the yellow-green residue purified by preparative TLC (10:3 light petroleum/acetone) to give three bands. The top band (R_f 0.6) was Re₂(CO)₉(HC₂CO₂Me) (18 mg). The second band (R_f 0.3) was recrystallized (CH₂Cl₂/ hexane) to give lime green crystals of Re{C,O- CH=C[Re(CO)₄(NMe₃)]C(OMe)O}(CO)₄ (5) (39 mg, 38%), m.p. 129–132°C. Anal. Found: C, 24.43; H, 1.77; N, 1.91%. C₁₅H₁₃NO₁₀Re₂ calcd.: C, 24.36; H, 1.76; N, 1.89%. IR (THF): ν (CO) 2092w, 2081m, 1982(br), 1969(sh), 1924s cm⁻¹. ¹H NMR (CDCl₃): δ 2.85 (9H, s, NMe₃); 3.92 (3H, s, OMe); 10.56 (1H, s, C₂H). ¹³C NMR (CDCl₃): δ 54.21 (s, OMe); 59.98 (s, NMe₃); 189.87 (s); 190.16 (s); 191.27 (s); 191.98 (s); 193.67 (s, CO); 217.11 (s, CO₂Me). FAB MS; m/z 739, M⁺; 711–571, [M – nCO]⁺ (n = 1–6). The lower band (R_f 0.2) (7 mg) was not characterized.

3.5. Crystallography

Unique diffractometer data sets were measured with the specified $2\theta_{max}$ limits at *ca*. 295 K ($2\theta - \theta$ scan mode; monochromatic Mo K α radiation, λ 0.71073 Å) yielding N independent reflections; N_0 with $I > 3\sigma(I)$ were considered observed and used in the full matrix least squares refinements after analytical absorption correction. Anisotropic thermal parameters were refined for the non-hydrogen atoms; $(x, y, z, U_{iso})_{\rm H}$ were included constrained at estimated values, the ligand hydrogen of **5** being confirmed in a difference map. Conventional residuals, R, R_w on |F| are quoted, statistical weights derivative of $\sigma^2(I) = \sigma^2(I_{\text{diff}}) + 0.0004\sigma^4(I_{\text{diff}})$ being used. Neutral atom complex scattering factors were employed, computed using the XTAL 3.0 program system [8] implemented by S.R. Hall. Pertinent results are given in the figures and tables.

Supplementary data have been deposited with the Cambridge Crystallographic Data Centre.

References

- 1 M.J. Mays, D.W. Prest and P.R. Raithby, J. Chem. Soc., Dalton Trans., (1981) 1771.
- 2 D.B. Pourreau, R.R. Whittle and G.L. Geoffroy, J. Organomet. Chem., 273 (1984) 333.
- 3 R.D. Adams, G. Chen and J. Yin, Organometallics, 10 (1991) 1278.
- 4 R.D. Adams, L. Chen and W. Wu, Organometallics, 11 (1992) 3505.
- 5 S. Top, M. Gunn, G. Jaouen, J. Vaissermann, J.C. Daran and M.J. McGlinchey, Organometallics, 11 (1992) 1201.
- 6 U. Koelle, J. Organomet. Chem., 155 (1978) 53.
- 7 H.S. Rhinesmith, J. Org. Chem., 40 (1975) 1773.
- 8 S.R. Hall and J.M. Stewart, eds. XTAL Users' Manual, Version 3.0, Universities of Western Australia and Maryland, 1990.